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1
LOOP FILTERING AROUND SLICE
BOUNDARIES OR TILE BOUNDARIES IN
VIDEO CODING

This application claims the benefit of U.S. Provisional
Application No. 61/550,211, filed Oct. 21, 2011, the entire
content of which is incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates to video coding, and more particu-
larly to techniques for loop filtering in a video coding
process.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers,
digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellu-
lar or satellite radio telephones, video teleconferencing
devices, and the like. Digital video devices implement video
compression techniques, such as those described in the
standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding
(AVC), the High Efficiency Video Coding (HEVC) standard
presently under development, and extensions of such stan-
dards, to transmit, receive and store digital video informa-
tion more efficiently.

Video compression techniques include spatial prediction
and/or temporal prediction to reduce or remove redundancy
inherent in video sequences. For block-based video coding,
a video frame or slice may be partitioned into blocks. Each
block can be further partitioned. Blocks in an intra-coded (1)
frame or slice are encoded using spatial prediction with
respect to reference samples in neighboring blocks in the
same frame or slice. Blocks in an inter-coded (P or B) frame
or slice may use spatial prediction with respect to reference
samples in neighboring blocks in the same frame or slice or
temporal prediction with respect to reference samples in
other reference frames. Spatial or temporal prediction results
in a predictive block for a block to be coded. Residual data
represents pixel differences between the original block to be
coded and the predictive block.

An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming
the predictive block, and the residual data indicating the
difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-
coding mode and the residual data. For further compression,
the residual data may be transformed from the pixel domain
to a transform domain, resulting in residual transform coef-
ficients, which then may be quantized. The quantized trans-
form coefficients, initially arranged in a two-dimensional
array, may be scanned in a particular order to produce a
one-dimensional vector of transform coeflicients for entropy
coding.

SUMMARY

In general, this disclosure describes techniques for coding
video data. In particular, this disclosure describes techniques
for an loop filtering processes for video coding. The tech-
niques of this disclosure may apply to loop filtering across
slice or tile boundaries. Loop filtering may include one or
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2

more of adaptive loop filtering (ALF), sample adaptive
offset (SAO) filtering, and deblocking filtering.

In one example of the disclosure, a method for performing
loop filtering in a video coding process is proposed. The
method includes determining, for a current pixel, that one or
more pixels corresponding to filter coefficients of a filter
mask for an loop filter are across one of a slice or a tile
boundary, and performing loop filtering on the current pixel
using a partial loop filter.

In one example, the method may further include removing
the filter coeflicients corresponding to the one or more pixels
across the slice or tile boundary from the filter mask, and
creating a partial filter mask for the partial loop filter using
the remaining filter coefficients in the filter mask. This
example may further include renormalizing the partial filter
mask, wherein performing loop filtering comprises perform-
ing loop filtering on the current pixel using the partial loop
filter with the renormalized partial filter mask.

In another example, the method may further include
removing first filter coefficients corresponding to the one or
more pixels across the slice or tile boundary from the filter
mask, removing second filter coefficients corresponding to
pixels on the inside of the slice and tile boundary in order to
maintain a symmetrical filter mask relative to the removed
first filter coefficients, and creating a partial filter mask for
the partial loop filter using the remaining filter coefficients in
the filter mask.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system

FIG. 2 is a conceptual diagram showing region-based
classification for an adaptive loop filter.

FIG. 3 is a conceptual diagram showing block-based
classification for an adaptive loop filter.

FIG. 4 is a conceptual diagram showing tiles of a frame.

FIG. 5 is a conceptual diagram showing slices of a frame.

FIG. 6 is conceptual diagram depicting an loop filter at
slice and tile boundaries.

FIG. 7 is conceptual diagram depicting asymmetric partial
filters at a horizontal boundary.

FIG. 8 is conceptual diagram depicting asymmetric partial
filters at a vertical boundary.

FIG. 9 is conceptual diagram depicting symmetric partial
filters at a horizontal boundary.

FIG. 10 is conceptual diagram depicting symmetric par-
tial filters at a vertical boundary.

FIG. 11 is a block diagram illustrating an example video
encoder.

FIG. 12 is a block diagram illustrating an example video
decoder.

FIG. 13 flowchart depicting an example method of loop
filtering according to the disclosure.

DETAILED DESCRIPTION

In general, this disclosure describes techniques for coding
video data. In particular, this disclosure describes techniques
for loop filtering in a video coding process.

Digital video devices implement video compression tech-
niques to encode and decode digital video information more
efficiently. Video compression may apply spatial (intra-
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frame) prediction and/or temporal (inter-frame) prediction
techniques to reduce or remove redundancy inherent in
video sequences.

There is a new video coding standard, namely High-
Efficiency Video Coding (HEVC), being developed by the
Joint Collaboration Team on Video Coding (JCT-VC) of
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Motion Picture Experts Group (MPEG). A recent draft of the
HEVC standard, referred to as “HEVC Working Draft 6 or
“WD6,” is described in document JCTVC-H1003, Bross et
al., “High efficiency video coding (HEVC) text specification
draft 6,” Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGl1,
8th Meeting: San Jose, Calif., USA, February, 2012, which,
as of Jun. 1, 2012, is downloadable from http://phenix.int-
evry.fr/jct/doc_end_user/documents/8_San %20Jose/wgll/
JCTVC-H1003-v22.zip.

A recent latest WD of HEVC, and referred to as HEVC
WD?7 hereinafter, is available, as of Aug. 2, 2012, from
http://phenix.int-evry fr/jct/doc_end_user/documents/9_Ge-
neva/wgl1/JCTVC-11003-v6.zip.

For video coding according to the current working draft of
HEVC, as one example, a video frame may be partitioned
into coding units. A coding unit (CU) generally refers to an
image region that serves as a basic unit to which various
coding tools are applied for video compression. A CU
usually has a luminance component, which may be denoted
as Y, and two chroma components, which may be denoted as
Cr and Cb. Depending on the video sampling format, the
size of the Cr and Cb components, in terms of number of
samples, may be the same as or different from the size of the
Y component. A CU is typically square, and may be con-
sidered to be similar to a so-called macroblock, e.g., under
other video coding standards such as I[TU-T H.264.

To achieve better coding efficiency, a coding unit may
have variable sizes depending on video content. In addition,
a coding unit may be split into smaller blocks for prediction
or transform. In particular, each coding unit may be further
partitioned into prediction units (PUs) and transform units
(TUs). Prediction units may be considered to be similar to
so-called partitions under other video coding standards, such
as H.264. Transform units (TUs) refer to blocks of residual
data to which a transform is applied to produce transform
coeflicients.

Coding according to some of the presently proposed
aspects of the developing HEVC standard will be described
in this application for purposes of illustration. However, the
techniques described in this disclosure may be useful for
other video coding processes, such as those defined accord-
ing to H.264 or other standard or proprietary video coding
processes.

HEVC standardization efforts are based on a model of a
video coding device referred to as the HEVC Test Model
(HM). The HM presumes several capabilities of video
coding devices over devices according to, e.g., ITU-T
H.264/AVC. For example, whereas H.264 provides nine
intra-prediction encoding modes, HM provides as many as
thirty-five intra-prediction encoding modes.

According to the HM, a CU may include one or more
prediction units (PUs) and/or one or more transform units
(TUs). Syntax data within a bitstream may define a largest
coding unit (LCU), which is a largest CU in terms of the
number of pixels. In general, a CU has a similar purpose to
a macroblock of H.264, except that a CU does not have a
size distinction. Thus, a CU may be split into sub-CUs. In
general, references in this disclosure to a CU may refer to a
largest coding unit of a picture or a sub-CU of an LCU. An

5

10

15

20

25

30

35

40

45

50

55

60

65

4

LCU may be split into sub-CUs, and each sub-CU may be
further split into sub-CUs. Syntax data for a bitstream may
define a maximum number of times an LCU may be split,
referred to as CU depth. Accordingly, a bitstream may also
define a smallest coding unit (SCU). This disclosure also
uses the term “block”, “partition,” or “portion” to refer to
any of a CU, PU, or TU. In general, “portion” may refer to
any sub-set of a video frame.

An LCU may be associated with a quadtree data structure.
In general, a quadtree data structure includes one node per
CU, where a root node corresponds to the LCU. If a CU is
split into four sub-CUs, the node corresponding to the CU
includes four leaf nodes, each of which corresponds to one
of the sub-CUs. Each node of the quadtree data structure
may provide syntax data for the corresponding CU. For
example, a node in the quadtree may include a split flag,
indicating whether the CU corresponding to the node is split
into sub-CUs. Syntax elements for a CU may be defined
recursively, and may depend on whether the CU is split into
sub-CUs. If a CU is not split further, it is referred as a
leaf-CU.

Moreover, TUs of leaf-CUs may also be associated with
respective quadtree data structures. That is, a leaf-CU may
include a quadtree indicating how the leaf-CU is partitioned
into TUs. This disclosure refers to the quadtree indicating
how an LCU is partitioned as a CU quadtree and the
quadtree indicating how a leaf-CU is partitioned into TUs as
a TU quadtree. The root node of a TU quadtree generally
corresponds to a leaf-CU, while the root node of a CU
quadtree generally corresponds to an LCU. TUs of the TU
quadtree that are not split are referred to as leaf-TUs.

A leaf-CU may include one or more prediction units
(PUs). In general, a PU represents all or a portion of the
corresponding CU, and may include data for retrieving a
reference sample for the PU. For example, when the PU is
inter-mode encoded, the PU may include data defining a
motion vector for the PU. The data defining the motion
vector may describe, for example, a horizontal component of
the motion vector, a vertical component of the motion
vector, a resolution for the motion vector (e.g., one-quarter
pixel precision or one-eighth pixel precision), a reference
frame to which the motion vector points, and/or a reference
list (e.g., list O or list 1) for the motion vector. Data for the
leaf-CU defining the PU(s) may also describe, for example,
partitioning of the CU into one or more PUs. Partitioning
modes may differ depending on whether the CU is not
predicatively coded, intra-prediction mode encoded, or
inter-prediction mode encoded. For intra coding, a PU may
be treated the same as a leaf transform unit described below.

To code a block (e.g., a prediction unit (PU) of video
data), a predictor for the block is first derived. The predictor
can be derived either through intra (I) prediction (i.e. spatial
prediction) or inter (P or B) prediction (i.e. temporal pre-
diction). Hence, some prediction units may be intra-coded
(D) using spatial prediction with respect to neighboring
reference blocks in the same frame, and other prediction
units may be inter-coded (P or B) with respect to reference
blocks in other frames. The reference blocks used for
prediction may include actual pixel values at so-called
integer pixel positions as reference samples, or synthesized
pixel values produced by interpolation at fractional pixel
positions as reference samples.

Upon identification of a predictor, the difference between
the original video data block and its predictor is calculated.
This difference is also called the prediction residual, and
refers to the pixel differences between the pixels of the block
to be coded and corresponding reference samples (which



US 9,462,298 B2

5

may be integer-precision pixels or interpolated fractional-
precision pixels, as mentioned above) of the reference block,
i.e., predictor. To achieve better compression, the prediction
residual (i.e., the array of pixel difference values) is gener-
ally transformed from the pixel (i.e., spatial) domain to a
transform domain, e.g., using a discrete cosine transform
(DCT), integer transform, Karhunen-Loeve (K-L) trans-
form, or other transform. The transform domain may be, for
example, a frequency domain.

Coding a PU using inter-prediction involves calculating a
motion vector between a current block and a block in a
reference frame. Motion vectors are calculated through a
process called motion estimation (or motion search). A
motion vector, for example, may indicate the displacement
of a prediction unit in a current frame relative to a reference
sample of a reference frame. A reference sample may be a
block that is found to closely match the portion of the CU
including the PU being coded in terms of pixel difference,
which may be determined by sum of absolute difference
(SAD), sum of squared difference (SSD), or other difference
metrics. The reference sample may occur anywhere within a
reference frame or reference slice. In some examples, the
reference sample may be interpolated, in whole or in part,
and occur at a fractional pixel position. Upon finding a
portion of the reference frame that best matches the current
portion, the encoder determines the current motion vector
for the current portion as the difference in the location from
the current portion to the matching portion in the reference
frame (e.g., from the center of the current portion to the
center of the matching portion).

In some examples, an encoder may signal the motion
vector for each portion in the encoded video bitstream. The
signaled motion vector is used by the decoder to perform
motion compensation in order to decode the video data.
However, signaling the original motion vector directly may
result in less efficient coding, as a large number of bits are
typically needed to convey the information.

Once motion estimation is performed to determine a
motion vector for a current portion, the encoder compares
the matching portion in the reference frame to the current
portion. This comparison typically involves subtracting the
portion (which is commonly referred to as a “reference
sample”) in the reference frame from the current portion and
results in so-called residual data, as mentioned above. The
residual data indicates pixel difference values between the
current portion and the reference sample. The encoder then
transforms this residual data from the spatial domain to a
transform domain, such as the frequency domain. Usually,
the encoder applies a discrete cosine transform (DCT) to the
residual data to accomplish this transformation. The encoder
performs this transformation in order to facilitate the com-
pression of the residual data because the resulting transform
coeflicients represent different frequencies, wherein the
majority of energy is usually concentrated on a few low
frequency coefficients.

Typically, the resulting transform coefficients are grouped
together in a manner that enables entropy coding, especially
if the transform coefficients are first quantized (rounded).
The encoder then performs statistical lossless (or so-called
“entropy”) encoding to further compress the run-length
coded quantized transform coefficients. After performing
lossless entropy coding, the encoder generates a bitstream
that includes the encoded video data.

The video encoding process may also include a so-called
“reconstruction loop” whereby encoded video blocks are
decoded and stored in a reference frame buffer for use as
reference frames for subsequently coded video blocks. The
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reference frame buffer also is referred to as the decoded
picture buffer or DPB. The reconstructed video blocks are
often filtered before storing in the reference frame buffer.
Filtering is commonly used, for example, to reduce blocki-
ness or other artifacts common to block-based video coding.
Filter coefficients (sometimes called filter taps) may be
defined or selected in order to promote desirable levels of
video block filtering that can reduce blockiness and/or
improve the video quality in other ways. A set of filter
coeflicients, for example, may define how filtering is applied
along edges of video blocks or other locations within video
blocks. Different filter coefficients may cause different levels
of filtering with respect to different pixels of the video
blocks. Filtering, for example, may smooth or sharpen
differences in intensity of adjacent pixel values in order to
help eliminate unwanted artifacts.

As one example, a deblocking filter may be used to
improve the appearance (e.g., smooth the edges) between
blocks of coded video data. Another example filter is a
sample adaptive offset (SAO) filter that is used to add offset
to reconstructed blocks of pixels to improve image quality
and coding efficiency. Another type of filter that is used in
the reconstruction loop in one proposal for HEVC is the
adaptive loop filter (ALF). The ALF is typically performed
after a deblocking filter. The ALF restores the fidelity of
pixels degraded by the video coding compression process.
The ALF attempts to minimize the mean squared error
between the original pixel values in the source frame and
those of the reconstructed frame. An ALF is also applied at
the output of a video decoder in the same fashion as was
applied during the encoding process. Collectively, any filter
used in the reconstruction loop may be referred to as a “loop
filter.” Loop filters may include one or more deblocking
filters, SAO filters, and ALFs. In addition, other types of
filters for use in the reconstruction loop are also possible.

This disclosure presents techniques for loop filtering. In
particular, this disclosure presents techniques for loop fil-
tering around slice and tile boundaries. The techniques of
this disclosure may be applied to any loop filter, including
deblocking, ALF, and SAO filters.

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system 10 that may be configured to
utilize techniques for loop filtering in a video coding process
in accordance with examples of this disclosure. As shown in
FIG. 1, the system 10 includes a source device 12 that
transmits encoded video to a destination device 14 via a
communication channel 16. Encoded video data may also be
stored on a storage medium 34 or a file server 36 and may
be accessed by the destination device 14 as desired. When
stored to a storage medium or file server, video encoder 20
may provide coded video data to another device, such as a
network interface, a compact disc (CD), Blu-ray or digital
video disc (DVD) burner or stamping facility device, or
other devices, for storing the coded video data to the storage
medium. Likewise, a device separate from video decoder 30,
such as a network interface, CD or DVD reader, or the like,
may retrieve coded video data from a storage medium and
provided the retrieved data to video decoder 30.

The source device 12 and the destination device 14 may
comprise any of a wide variety of devices, including desktop
computers, notebook (i.e., laptop) computers, tablet com-
puters, set-top boxes, telephone handsets such as so-called
smartphones, televisions, cameras, display devices, digital
media players, video gaming consoles, or the like. In many
cases, such devices may be equipped for wireless commu-
nication. Hence, the communication channel 16 may com-
prise a wireless channel, a wired channel, or a combination
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of wireless and wired channels suitable for transmission of
encoded video data. Similarly, the file server 36 may be
accessed by the destination device 14 through any standard
data connection, including an Internet connection. This may
include a wireless channel (e.g., a Wi-Fi connection), a
wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded
video data stored on a file server.

Techniques for loop filtering in a video coding process, in
accordance with examples of this disclosure, may be applied
to video coding in support of any of a variety of multimedia
applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmis-
sions, streaming video transmissions, e.g., via the Internet,
encoding of digital video for storage on a data storage
medium, decoding of digital video stored on a data storage
medium, or other applications. In some examples, the sys-
tem 10 may be configured to support one-way or two-way
video transmission to support applications such as video
streaming, video playback, video broadcasting, and/or video
telephony.

In the example of FIG. 1, the source device 12 includes a
video source 18, a video encoder 20, a modulator/demodu-
lator 22 and a transmitter 24. In the source device 12, the
video source 18 may include a source such as a video
capture device, such as a video camera, a video archive
containing previously captured video, a video feed interface
to receive video from a video content provider, and/or a
computer graphics system for generating computer graphics
data as the source video, or a combination of such sources.
As one example, if the video source 18 is a video camera, the
source device 12 and the destination device 14 may form
so-called camera phones or video phones. However, the
techniques described in this disclosure may be applicable to
video coding in general, and may be applied to wireless
and/or wired applications, or application in which encoded
video data is stored on a local disk.

The captured, pre-captured, or computer-generated video
may be encoded by the video encoder 20. The encoded video
information may be modulated by the modem 22 according
to a communication standard, such as a wireless communi-
cation protocol, and transmitted to the destination device 14
via the transmitter 24. The modem 22 may include various
mixers, filters, amplifiers or other components designed for
signal modulation. The transmitter 24 may include circuits
designed for transmitting data, including amplifiers, filters,
and one or more antennas.

The captured, pre-captured, or computer-generated video
that is encoded by the video encoder 20 may also be stored
onto a storage medium 34 or a file server 36 for later
consumption. The storage medium 34 may include Blu-ray
discs, DVDs, CD-ROMs, flash memory, or any other suit-
able digital storage media for storing encoded video. The
encoded video stored on the storage medium 34 may then be
accessed by the destination device 14 for decoding and
playback.

The file server 36 may be any type of server capable of
storing encoded video and transmitting that encoded video
to the destination device 14. Example file servers include a
web server (e.g., for a website), an FTP server, network
attached storage (NAS) devices, a local disk drive, or any
other type of device capable of storing encoded video data
and transmitting it to a destination device. The transmission
of encoded video data from the file server 36 may be a
streaming transmission, a download transmission, or a com-
bination of both. The file server 36 may be accessed by the
destination device 14 through any standard data connection,
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including an Internet connection. This may include a wire-
less channel (e.g., a Wi-Fi connection), a wired connection
(e.g., DSL, cable modem, Ethernet, USB, etc.), or a com-
bination of both that is suitable for accessing encoded video
data stored on a file server.

The destination device 14, in the example of FIG. 1,
includes a receiver 26, a modem 28, a video decoder 30, and
adisplay device 32. The receiver 26 of the destination device
14 receives information over the channel 16, and the modem
28 demodulates the information to produce a demodulated
bitstream for the video decoder 30. The information com-
municated over the channel 16 may include a variety of
syntax information generated by the video encoder 20 for
use by the video decoder 30 in decoding video data. Such
syntax may also be included with the encoded video data
stored on the storage medium 34 or the file server 36. Each
of the video encoder 20 and the video decoder 30 may form
part of a respective encoder-decoder (CODEC) that is
capable of encoding or decoding video data.

The display device 32 may be integrated with, or external
to, the destination device 14. In some examples, the desti-
nation device 14 may include an integrated display device
and also be configured to interface with an external display
device. In other examples, the destination device 14 may be
a display device. In general, the display device 32 displays
the decoded video data to a user, and may comprise any of
a variety of display devices such as a liquid crystal display
(LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

In the example of FIG. 1, the communication channel 16
may comprise any wireless or wired communication
medium, such as a radio frequency (RF) spectrum or one or
more physical transmission lines, or any combination of
wireless and wired media. The communication channel 16
may form part of a packet-based network, such as a local
area network, a wide-area network, or a global network such
as the Internet. The communication channel 16 generally
represents any suitable communication medium, or collec-
tion of different communication media, for transmitting
video data from the source device 12 to the destination
device 14, including any suitable combination of wired or
wireless media. The communication channel 16 may include
routers, switches, base stations, or any other equipment that
may be useful to facilitate communication from the source
device 12 to the destination device 14.

The video encoder 20 and the video decoder 30 may
operate according to a video compression standard, such as
the High Efficiency Video Coding (HEVC) standard pres-
ently under development, and may conform to the HEVC
Test Model (HM). Alternatively, the video encoder 20 and
the video decoder 30 may operate according to other pro-
prietary or industry standards, such as the ITU-T H.264
standard, alternatively referred to as MPEG-4, Part 10,
Advanced Video Coding (AVC), or extensions of such
standards. The techniques of this disclosure, however, are
not limited to any particular coding standard. Other
examples include MPEG-2 and ITU-T H.263.

Although not shown in FIG. 1, in some aspects, the video
encoder 20 and the video decoder 30 may each be integrated
with an audio encoder and decoder, and may include appro-
priate MUX-DEMUX units, or other hardware and software,
to handle encoding of both audio and video in a common
data stream or separate data streams. If applicable, in some
examples, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).
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The video encoder 20 and the video decoder 30 each may
be implemented as any of a variety of suitable encoder
circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in
software, a device may store instructions for the software in
a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more
processors to perform the techniques of this disclosure. Each
of the video encoder 20 and the video decoder 30 may be
included in one or more encoders or decoders, either of
which may be integrated as part of a combined encoder/
decoder (CODEC) in a respective device.

The video encoder 20 may implement any or all of the
techniques of this disclosure for loop filtering in a video
coding process. Likewise, the video decoder 30 may imple-
ment any or all of these techniques for loop filtering in a
video coding process. A video coder, as described in this
disclosure, may refer to a video encoder or a video decoder.
Similarly, a video coding unit may refer to a video encoder
or a video decoder. In this context, a video coding unit is
physical hardware and differs from the CU data structure
discussed above. Likewise, video coding may refer to video
encoding or video decoding.

In one ALF proposal for HEVC, two adaptation modes
(i.e., block and region adaptation modes) are proposed. For
region adaptive mode, a frame is divided into 16 regions,
and each region can have one set of linear filter coefficients
(a plurality of AC coefficients and one DC coefficient) and
one region can share the same filter coefficients with other
regions. FIG. 2 is a conceptual diagram showing region-
based classification for an adaptive loop filter. As shown in
FIG. 2, frame 120 is divided into 16 regions, and each region
may include multiple CUs. Each of these 16 regions is
represented by a number (0-15) that indicates the particular
set of linear filter coefficients used by that region. The
numbers (0-15) may be index numbers to a predetermined
set of filter coefficients that are stored at both a video
encoder and a video decoder. In one example, a video
encoder may signal, in the encoded video bitstream, the
index number of the set of filter coefficients used by the
video encoder for a particular region. Based on the signaled
index, a video decoder may retrieve the same predetermined
set of filter coefficients to use in the decoding process for
that region. In other examples, the filter coefficients are
signaled explicitly for each region.

For a block based classification mode, a frame is divided
in to 4x4 blocks, and each 4x4 block derives one class by
computing a metric using direction and activity information.
For each class, one set of linear filter coefficients (a plurality
of AC coefficients and one DC coefficient) can be used and
one class can share the same filter coefficients with other
classes. FIG. 3 is a conceptual diagram showing block-based
classification for an adaptive loop filter.

The computation of the direction and activity, and the
resulting metric based on direction and activity, are shown
below:

Direction

Ver_act(i,j)=abs(X(1,))<<1-X(1,j-1)-X(1,j+1))
Hor_act(i,j)=abs(X(1,j)<<1-X(i-1,))-X(@i+1,)))
Hp=2, 052,20 ,H(1j)

VB:Zi:0,2Zj:0,2V(iSj)

Direction=0, 1(H>2V), 2(V>2H)
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Activity

Ly=Hy+V,
5 classes (0, 1, 2, 3, 4)

Metric

Activity+5*Direction

Hor_act (1, j) generally refers to the horizontal activity of
current pixel (i, j), and Vert_act(i, j) generally refers to the
vertical activity of current pixel (i,j). X(i, j) generally refers
to a pixel vale of pixel (i, j)), where i and j indicate
horizontal and vertical coordinates of the current pixel. In
this context, activity is generally the gradient or variance
among pixels in a location.

Hj, refers to the horizontal activity of the 4x4 block, which
in this example is determined based on a sum of horizontal
activity for pixels (0, 0), (0, 2), (2, 0), and (2, 2). V5 refers
to the vertical activity of the 4x4 block, which in this
example is determined based on a sum of vertical activity for
pixels (0, 0), (0, 2), (2, 0), and (2, 2). “<<1” represents a
multiply by two operation. Based on the values of Hy and
Vg, a direction can be determined. As one example, if the
value of Hy is more than 2 times the value of Vj, then the
direction can be determined to be direction 1 (i.e. horizon-
tal), which might correspond to more horizontal activity
than vertical activity. If the value of V is more than 2 times
the value of Hg, then the direction can be determined to be
direction 2 (i.e. vertical), which might correspond to more
vertical activity than horizontal activity. Otherwise, the
direction can be determined to be direction O (i.e. no
direction), meaning neither horizontal nor vertical activity is
dominant. The labels for the various directions and the ratios
used to determine the directions merely constitute one
example, as other labels and ratios can also be used.

Activity (L) for the 4x4 block can be determined as a
sum of the horizontal and vertical activity. The value of L5
can be classified into a range. This particular example shows
five ranges, although more or fewer ranges may similarly be
used. Based on the combination of activity and direction, a
filter for the 4x4 block of pixels can be selected. As one
example, a filter may be selected based on a two-dimen-
sional mapping of activity and direction to filters, or activity
and direction may be combined into a single metric, and that
single metric may be used to select a filter (e.g., the
metric=Activity+5*Direction).

Returning to FIG. 3, block 140 represents a 4x4 block of
pixels. In this example, only four of the sixteen pixels are
used to calculate activity and direction metrics for a block-
based ALF. The four pixels are pixel (0, 0) which is labeled
as pixel 141, pixel (2, 0) which is labeled as pixel 142, pixel
(0, 2) which is labeled as pixel 143, and pixel (2, 2) which
is labeled as pixel 144. The Horizontal activity of pixel 141
(i.e., hor_act(0, 0)), for example, is determined based on a
left neighboring pixel and a right neighboring pixel. The
right neighboring pixel is labeled as pixel 145. The left
neighboring pixel is located in a different block than the 4x4
block and is not shown in FIG. 3. The vertical activity of
pixel 142 (i.e. ver_act(2, 0)), for example, is determined
based on an upper neighboring pixel and a lower neighbor-
ing pixel. The lower neighboring pixel is labeled as pixel
146, and the upper neighboring pixel is located in a different
block than the 4x4 block and is not shown in FIG. 3.
Horizontal and vertical activity may be calculated for pixels
143 and 144 in a similar manner.

In one proposal for the HEVC standard, the ALF is
performed along with other loop filters (e.g., deblocking
(DB) and SAO). Filters may be said to be performed “in
loop” when the filters are applied by a video coding device
to video data before outputting the video data as pixel data
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for display. In this manner, in-loop filtered video data may
be used for reference by subsequently coded video data.
Moreover, both a video encoder and a video decoder may be
configured to perform substantially the same filtering pro-
cess. The loop filters are processed in the following order:
DB, SAO, ALF. In one WD of HEVC, each of the loop filters
are frame-based. However, if any of the loop filters are
applied at the slice level (including an entropy slice) or at the
tile level, special loop filter handling may be beneficial at the
slice and tile boundaries. An entropy slice is independently
entropy coded, but uses dependent pixel processing (e.g.,
intra-prediction) between different slices.

FIG. 4 is a conceptual diagram showing example tiles of
a frame. Frame 160 may be divided into multiple largest
coding units (LCU) 162. Two or more LCUs may be
grouped into a rectangular-shaped tiles. When tile-based
coding is enabled, coding units within each tile are coded
(i.e., encoded or decoded) together before coding subse-
quent tiles. As shown for frame 160, tiles 161 and 163 are
oriented in a horizontal manner and have both horizontal and
vertical boundaries. As shown for frame 170, tiles 161 and
163 are oriented in a vertical manner and have both hori-
zontal and vertical boundaries.

FIG. 5 is a conceptual diagram showing examples slices
of a frame. Frame 180 may be divided into a slice which
consists of multiple consecutive LCUs (182) in raster scan
order across the frame. In some examples, a slice may have
a uniform shape (e.g., slice 181) and encompass one or more
complete rows of LCUs in a frame. In other examples, a
slice is defined as a specific number of consecutive LCUs in
raster scan order, and may exhibit a non-uniform shape. For
example, frame 190 is divided into a slice 191 that consists
ot 10 consecutive LCUs (182) in raster scan order. As frame
190 is only 8 LCUs wide, an additional two L.CUs in the next
row are included in slice 191.

It should be noted that in some instances, slice and tile
boundaries may be coincident (i.e., they directly overlap).
The techniques of this disclosure apply in situations slice
and tile boundary are coincident, as well as in situations
where slice and tile boundaries are not coincident.

FIG. 6 is conceptual diagram depicting a loop filter at
slice and tile boundaries. Horizontal slice and/or tile bound-
ary 201 is depicted as a horizontal line and vertical tile
boundary 202 is depicted as a vertical line. The filled circles
(i.e., dots) of filter mask 200 in FIG. 3 represent coefficients
(i.e., weights) of the filter, which are applied to pixels of the
reconstructed video block in the slice and/or tile. That is, the
value of a coeflicient of the filter may be applied to the value
of a corresponding pixel, such that the value of the corre-
sponding is multiplied by the coefficient value to produce a
weighted pixel value. The pixel value may include a lumi-
nance value and one or more chrominance values. Assuming
that the center of the filter is positioned at the position of (or
in close proximity to) the pixel to be filtered, a filter
coeflicient may be said to correspond to a pixel that is
collocated with the position of the coefficient. Pixels corre-
sponding to coefficients of a filter can also be referred to as
“supporting pixels” or collectively, as a “set of support” for
the filter. The filtered value of a current pixel 203 (corre-
sponding to the center pixel mask coefficient CO) is calcu-
lated my multiplying each coefficient in filter mask 200 by
the value of its corresponding pixel, and summing each
resulting value.

In this disclosure, the term “filter” generally refers to a set
of filter coefficients. For example, a 3x3 filter may be
defined by a set of 9 filter coefficients, a 5x5 filter may be
defined by a set of 25 filter coefficients, a 9x5 filter may be
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defined by a set of 45 filter coefficients, and so on. Filter
mask 200 shown in FIG. 6 is a 7x5 filter having 7 filter
coefficients in the horizontal direction and 5 filter coeffi-
cients in the vertical direction (the center filter coeflicient
counting for each direction), however any number of filter
coeflicients may be applicable for the techniques of this
disclosure. The term “set of filters” generally refers to a
group of more than one filter. For example, a set of two 3x3
filters, could include a first set of 9 filter coefficients and a
second set of 9 filter coefficients. The term “shape,” some-
times called the “filter support,” generally refers to the
number of rows of filter coefficients and number of columns
of filter coefficients for a particular filter. For example, 9x9
is an example of a first shape, 7x5 is an example of a second
shape, and 5x9 is an example of a third shape. In some
instances, filters may take non-rectangular shapes including
diamond-shapes, diamond-like shapes, circular shapes, cir-
cular-like shapes, hexagonal shapes, octagonal shapes, cross
shapes, X-shapes, T-shapes, other geometric shapes, or
numerous other shapes or configuration. The example in
FIG. 6 is a cross shape, however other shape may be used.
In most common cases, regardless of the shape of the filter,
the center pixel in the central pixel in the filter mask is the
one that is being filtered. In other examples, the filter pixel
is offset from the center of the filter mask.

In some video coding techniques, loop filtering (e.g.,
deblocking, ALF, and SAO) is disabled across slices and/or
tile boundaries. This is because pixels in neighboring slices
and/or tiles may not have already been coded, and as such,
would be unavailable for use with some filter masks. In these
cases, padded data is used for unavailable pixels (i.e., pixels
that are on the other side of the slice or tile boundary from
the current slice or tile) and filtering is not performed. The
use of such padded data may decrease the visual quality of
the image around slice and/or tile boundaries.

In view of the drawback, this disclosure proposes tech-
niques for performing loop filtering along slice and tile
boundaries. The techniques of this disclosure may be used
with any type of loop filter used in video coding, such as
ALF, deblocking, and SAO filters. In general, this disclosure
proposes using partial filters around slice and tile boundar-
ies. A partial filter is a filter that does not use one or more
filter coeflicients that are typically used for the filtering
process. In one example, this disclosure proposes using
partial filters where at least the filter coefficients correspond-
ing to pixels on the other side of slice and/or tile boundary
are not used. Hence, in some examples, there is no need to
provide padded data for the pixels on the other side of the
slice and/or tile boundary. Rather, a partial filter can be
configured to omit the pixels on the other side of the slice
and/or tile boundary.

In one example, asymmetric partial filters are used near
slice and tile boundaries. FIG. 7 is conceptual diagram
depicting asymmetric partial filters at a horizontal boundary.
FIG. 8 is conceptual diagram depicting asymmetric partial
filters at a vertical boundary. In this approach, as shown in
FIGS. 7 and 8, only available pixels (i.e., pixels within the
current slice and/or tile) are used for filtering. Filter taps
outside the tile or slice boundary are skipped. As such, no
padded pixel data is used. The filters in FIG. 7 and FIG. 8
are referred to as asymmetric because there are more filter
taps used on one side (either the horizontal or vertical side)
of the center of the filter mask then the other. As the entire
filter mask is not used, the filter coefficients may be renor-
malized to produce the desired results. Techniques for
renormalization will be discussed in more detail below.
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In Case 1 of FIG. 7, the center 221 of filter mask 220 is
one row of pixels away from a horizontal slice or tile
boundary. Since filter mask 220 is a 7x5 filter, one filter
coeflicient in the vertical direction corresponds to a pixel
that is over the horizontal boundary. This filter coefficient is
depicted in white, i.e., as an unfilled circle. The pixel
corresponding to the white filter coefficient is unavailable
for use in filtering, as it has not yet been coded (e.g., encoded
or decoded). As such, the filter coefficient corresponding to
that pixel is not used. Likewise, in Case 2, the center 222 of
filter mask 225 is on a row of pixels adjacent the horizontal
slice and/or tile boundary. In this case, two filter coefficients
correspond to pixels that are over the horizontal boundary.
As such, neither of the two white filter coefficients in filter
mask 225 is used for loop filtering. In both Case 1 and Case
2, all black (i.e., filled circle) filter coefficients are used. It
should be noted that filter pixels values in accordance with
this disclosure may include filtering luminance components
of the pixel value, filtering chrominance components of the
pixel value, or filtering both luminance and chrominance
components of the pixel value.

In case 3 of FIG. 8, the center 235 of filter mask 234 is two
columns of pixels away from a vertical tile boundary. Since
filter mask 234 is a 7x5 filter, one filter coefficient in the
horizontal direction corresponds to a pixel that is over the
vertical boundary. Again, this filter coefficient is depicted in
white. The pixel corresponding to the white filter coeficient
is unavailable for use in filtering, as it has not yet been coded
(e.g., encoded or decoded). As such, the filter coefficient
corresponding to that pixel is not used. Similarly, in Case 4,
the center 233 of filter mask 232 is one column of pixels
away from a vertical tile boundary. In this case, two filter
coeflicients correspond to pixels that over the vertical
boundary. As such, neither of the two white filter coefficients
in filter mask 232 is used for loop filtering. In Case 5, the
center 231 of filter mask 230 is on a column of pixels
adjacent the vertical tile boundary. In this case, three filter
coeflicients correspond to pixels that are over the vertical
boundary. As such, none of the three white filter coefficients
in filter makes 230 are used for loop filtering. In all of Case
1, 2 or 3, all black filter coefficients are used.

In another example, symmetric partial filters are used near
slice and tile boundaries. FIG. 9 is conceptual diagram
depicting symmetric partial filters at a horizontal boundary.
FIG. 10 is conceptual diagram depicting symmetric partial
filters at a vertical boundary. As with asymmetric partial
filters, in this approach, only available pixels are used for
filtering. That is, the filter taps outside the tile or slice
boundary are skipped. As such, no padded pixel data is used.
Also, some coeflicients of the filter mask that are within the
current slice or tile are also not used, so as to retain a
symmetrical filter mask.

For example, in Case 6 of FIG. 9, one filter coefficient in
filter mask 240 is outside the horizontal slice or tile bound-
ary. The corresponding filter coefficient within the horizontal
boundary on the other side of the filter mask is also not used.
In this way, a symmetrical arrangement of coefficients in the
vertical direction around the center coefficient 241 is pre-
served. In Case 7 of FIG. 9, two filter coefficients in filter
mask 242 are across the horizontal boundary. The corre-
sponding two filter coeflicients on the other side of the center
filter coefficient 243 within the horizontal boundary are also
not used. Similar examples are shown in FIG. 10 for the
vertical tile boundary. In case 8, one filter coefficient cor-
responds to a pixel across the vertical tile boundary. This
coeflicient is not used, as well as another pixel at the left side
of the horizontal part of filter mask 250 to maintain sym-
metry around center coefficient 251. Similar filter mask
adjustments are made for filter masks 252 and 254 in the
case where two (Case 9) and four (Case 10) filter coefficients
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correspond to pixel across the vertical boundary. Shown in
Cases 9 and 10, symmetry is maintained around center
coeflicients 253 and 255, respectively.

Like the asymmetric partial filters shown in FIG. 7 and
FIG. 8, the entire filter mask is not used for the symmetric
partial filters. Accordingly, the filter coefficients may be
renormalized. Techniques for renormalization will be dis-
cussed in more detail below.

To reiterate, for each of the filter masks shown in FIGS.
6-10, a filtered value for the pixel corresponding to the
center of the filter mask is calculated by multiplying a filter
coeflicient (represented by a darkened circle in the mask) to
an associate pixel value, and then adding the multiplied
values together.

Whether or not to apply a partial filter (e.g., asymmetric
partial filter or symmetric partial filter) can be an adaptive
decision. For the examples shown in FIG. 7 and FIG. 9, a
partial filter may be used for Case 1 and Case 6, but not for
Case 2 and Case 7. It may not be preferable to use partial
filters for Case 2 and Case 7 because the number of unused
filter coefficients is larger. Instead, other techniques
described below (e.g., mirror padding, skipping filtering,
etc.) can be used for Case 2 and Case 7. Likewise, for the
examples shown in FIG. 8 and FIG. 10, the use of partial
filtering may be applicable for Cases 3, 4, 8, and 9, but not
for Cases 5 and 10.

The decision made by a coder, i.e., an encoder or decoder,
to use a partial filter can also be based on other criteria. For
example, a partial filter may not be used when the number
of coeflicients whose corresponding pixels are not available
is greater than some threshold. A partial filter may not be
used when the sum of the coefficient values whose corre-
sponding pixels are not available is greater than some
threshold. As another example, a partial filter may not be
used when the sum of the absolute values of the coeflicient
values whose corresponding pixels are not available is
greater than some threshold.

Number of coefficients whose corresponding pixels are

not available>Th1

Sum (coefficients whose corresponding pixels are not

available)>Th2

Sum (abs(coeflicients whose corresponding pixels are not

available))>Th3.

A subset of the above conditions can be chosen to decide
whether to apply a partial filter for specific slice of tile
boundaries. In the above conditions, a corresponding pixel is
a pixel with a pixel value to which a particular coefficient is
to be applied to weight the pixel value, e.g., as part of the
weighted summation of pixel values to produce the filtered
pixel value of the current pixel.

In another example of the disclosure, partial filtering may
only be enabled for horizontal slice and tile boundaries. At
vertical boundaries, however, loop filtering may be skipped
entirely. More specifically, in one example, if a video coder
determines that a loop filter mask will use pixels on the other
side of a vertical tile boundary, loop filtering will be skipped
for that pixel. In other example, if a video coder determines
that an loop filter mask will use pixels on the other side of
a vertical tile boundary for one or more pixels in a coding
unit, loop filtering will be skipped for the entire coding unit.

In other examples of the disclosure, additional techniques
may be applied at slice and tile boundaries when partial
filtering is not used. In one example, the loop filtering
technique may use mirrored padded pixels on the other side
of a slice or tile boundary, rather than using repetitively
padded pixels. Mirrored pixels reflect the pixel values on the
inside of the slice or tile boundary. For example, if the
unavailable pixel is adjacent the tile or slice boundary, i.e.,
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outside of the tile or slice boundary, it would take the value
(i.e., mirror) of the pixel on the inside of the tile or slice
boundary that is also adjacent the boundary. Likewise, if the
unavailable pixel is one row or column away from the tile or
slice boundary, it would take the value (i.e., mirror) of the
pixel on the inside of the tile or slice boundary that is also
one row or column away from the boundary, and so forth.

In another example, the filtered values for pixels on the
other side of a tile or slice boundary may be calculated
according to the following equation: a*loop filter using
padded data a+b*pre-filtered output where a+b=1. That is,
padded pixels (i.e., pixels added to the other side of the slice
or tile boundary) are multiplied by the loop filter coeflicient
corresponding to the padded pixel and by a constant “a.”
This value is then added to the multiplication of the pre-
filtered padded pixel value and a constant “b,” where a+b=1.
The values a and b are predefined values based on training,
and are typically 0.5 and 0.5.

Renormalization of filter coeflicients for symmetric and
asymmetric partial filter can be achieved in different ways.
In general, the renormalization process recalculates the
value of the remaining filter coefficients in a partial filter
mask, such that the total value of the remaining filter
coeflicients equals the total value of the original filter
coeflicients. Often, this total value is 1. Consider an example
where the original filter coefficients are labeled as
C_1, ..., C_N, where C is the value of a particular
coeflicient. Now assume that the C_1, . .., C_M coeflicients
do not have available corresponding pixels (i.e., the corre-
sponding pixels are across a slice or tile boundary). Renor-
malized filter coefficients can be defined as follows:

Example 1

Coeff_all=C_1+C 2+...+CN

Coeff_part=Coeff all-(C_1+ ... +C_M)

New_coeffs C_i'=C_i*Coeff_all/Coeff_part,i=

In example 1, Coeff_all represents the value of all coet-
ficients in a filter mask summed together. Coeff_part repre-
sents the value of all coefficients in a partial filter mask. That
is, the summed value of the coefficients corresponding to
unavailable pixels (C_1+ . .. +C_M) are subtracted from the
sum of all possible coeflicients in the filter mask (Coeff_all).
New_coefls_Ci' represents the value of the filter coefficients
in the partial coefficients after a renormalization process. In
Example 1 above, the value of the coefficient remaining in
the partial filter is multiplied the total value of all possible
coeflicients in the filter mask (Coeff_all) and divided by the
total value of all coefficients in the partial filter mask
(Coeft_part).

Example 2 below shows another technique for renormal-
izing filter coefficients in a partial filter.

Example 2

For subset of C_i, i=M+1, ... ,N,add C_k, k=1,... , M
For example,

C_(M+1)=C_(M+1)+C_1,C_(M+2)=C_(M+2)+
3,...o0r a.

C_L'=C L+(C_14C 2+ ... +C_M) b.
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In this example, filter coefficients are renormalized by
adding the coefficients of skipped filter taps (C_k) to the
coeflicients of non-skipped filter taps (C_i).

FIG. 11 is a block diagram illustrating an example of a
video encoder 20 that may use techniques for loop filtering
in a video coding process as described in this disclosure. The
video encoder 20 will be described in the context of HEVC
coding for purposes of illustration, but without limitation of
this disclosure as to other coding standards or methods that
may require loop filtering. The video encoder 20 may
perform intra- and inter-coding of CUs within video frames.
Intra-coding relies on spatial prediction to reduce or remove
spatial redundancy in video data within a given video frame.
Inter-coding relies on temporal prediction to reduce or
remove temporal redundancy between a current frame and
previously coded frames of a video sequence. Intra-mode
(I-mode) may refer to any of several spatial-based video
compression modes. Inter-modes such as uni-directional
prediction (P-mode) or bi-directional prediction (B-mode)
may refer to any of several temporal-based video compres-
sion modes.

As shown in FIG. 11, the video encoder 20 receives a
current video block within a video frame to be encoded. In
the example of FIG. 11, the video encoder 20 includes a
motion compensation unit 44, a motion estimation unit 42,
an intra-prediction module 46, a reference frame buffer 64,
a summer 50, a transform module 52, a quantization unit 54,
and an entropy encoding unit 56. The transform module 52
illustrated in FIG. 11 is the unit that applies the actual
transform or combinations of transform to a block of
residual data, and is not to be confused with block of
transform coefficients, which also may be referred to as a
transform unit (TU) of a CU. For video block reconstruction,
the video encoder 20 also includes an inverse quantization
unit 58, an inverse transform module 60, a summer 62, and
a loop filter unit 43. Loop filter unit 43 may comprise one or
more of a deblocking filter unit, an SAO filter unit, and an
ALF filter unit.

During the encoding process, the video encoder 20
receives a video frame or slice to be coded. The frame or
slice may be divided into multiple video blocks, e.g., largest
coding units (LCUs). The motion estimation unit 42 and the
motion compensation unit 44 perform inter-predictive cod-
ing of the received video block relative to one or more
blocks in one or more reference frames to provide temporal
compression. The intra-prediction module 46 may perform
intra-predictive coding of the received video block relative
to one or more neighboring blocks in the same frame or slice
as the block to be coded to provide spatial compression.

The mode select unit 40 may select one of the coding
modes, intra or inter, e.g., based on rate distortion results for
each mode, and provides the resulting intra- or inter-pre-
dicted block (e.g., a prediction unit (PU)) to the summer 50
to generate residual block data and to the summer 62 to
reconstruct the encoded block for use in a reference frame.
Summer 62 combines the predicted block with inverse
quantized, inverse transformed data from inverse transform
module 60 for the block to reconstruct the encoded block, as
described in greater detail below. Some video frames may be
designated as I-frames, where all blocks in an I-frame are
encoded in an intra-prediction mode. In some cases, the
intra-prediction module 46 may perform intra-prediction
encoding of a block in a P- or B-frame, e.g., when motion
search performed by the motion estimation unit 42 does not
result in a sufficient prediction of the block.

The motion estimation unit 42 and the motion compen-
sation unit 44 may be highly integrated, but are illustrated
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separately for conceptual purposes. Motion estimation (or
motion search) is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for
example, may indicate the displacement of a prediction unit
in a current frame relative to a reference sample of a
reference frame. The motion estimation unit 42 calculates a
motion vector for a prediction unit of an inter-coded frame
by comparing the prediction unit to reference samples of a
reference frame stored in the reference frame buffer 64. A
reference sample may be a block that is found to closely
match the portion of the CU including the PU being coded
in terms of pixel difference, which may be determined by
sum of absolute difference (SAD), sum of squared difference
(SSD), or other difference metrics. The reference sample
may occur anywhere within a reference frame or reference
slice, and not necessarily at a block (e.g., coding unit)
boundary of the reference frame or slice. In some examples,
the reference sample may occur at a fractional pixel position.

The motion estimation unit 42 sends the calculated
motion vector to the entropy encoding unit 56 and the
motion compensation unit 44. The portion of the reference
frame identified by a motion vector may be referred to as a
reference sample. The motion compensation unit 44 may
calculate a prediction value for a prediction unit of a current
CU, e.g., by retrieving the reference sample identified by a
motion vector for the PU.

The intra-prediction module 46 may intra-predict the
received block, as an alternative to inter-prediction per-
formed by the motion estimation unit 42 and the motion
compensation unit 44. The intra-prediction module 46 may
predict the received block relative to neighboring, previ-
ously coded blocks, e.g., blocks above, above and to the
right, above and to the left, or to the left of the current block,
assuming a left-to-right, top-to-bottom encoding order for
blocks. The intra-prediction module 46 may be configured
with a variety of different intra-prediction modes. For
example, the intra-prediction module 46 may be configured
with a certain number of directional prediction modes, e.g.,
thirty-five directional prediction modes, based on the size of
the CU being encoded.

The intra-prediction module 46 may select an intra-
prediction mode by, for example, calculating error values for
various intra-prediction modes and selecting a mode that
yields the lowest error value. Directional prediction modes
may include functions for combining values of spatially
neighboring pixels and applying the combined values to one
or more pixel positions in a PU. Once values for all pixel
positions in the PU have been calculated, the intra-predic-
tion module 46 may calculate an error value for the predic-
tion mode based on pixel differences between the PU and the
received block to be encoded. The intra-prediction module
46 may continue testing intra-prediction modes until an
intra-prediction mode that yields an acceptable error value is
discovered. The intra-prediction module 46 may then send
the PU to the summer 50.

The video encoder 20 forms a residual block by subtract-
ing the prediction data calculated by the motion compensa-
tion unit 44 or the intra-prediction module 46 from the
original video block being coded. The summer 50 represents
the component or components that perform this subtraction
operation. The residual block may correspond to a two-
dimensional matrix of pixel difference values, where the
number of values in the residual block is the same as the
number of pixels in the PU corresponding to the residual
block. The values in the residual block may correspond to
the differences, i.e., error, between values of co-located
pixels in the PU and in the original block to be coded. The
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differences may be chroma or luma differences depending
on the type of block that is coded.

The transform module 52 may form one or more trans-
form units (TUs) from the residual block. The transform
module 52 selects a transform from among a plurality of
transforms. The transform may be selected based on one or
more coding characteristics, such as block size, coding
mode, or the like. The transform module 52 then applies the
selected transform to the TU, producing a video block
comprising a two-dimensional array of transform coeffi-
cients. The transform module 52 may signal the selected
transform partition in the encoded video bitstream.

The transform module 52 may send the resulting trans-
form coefficients to the quantization unit 54. The quantiza-
tion unit 54 may then quantize the transform coefficients.
The entropy encoding unit 56 may then perform a scan of the
quantized transform coefficients in the matrix according to a
scanning mode. This disclosure describes the entropy encod-
ing unit 56 as performing the scan. However, it should be
understood that, in other examples, other processing units,
such as the quantization unit 54, could perform the scan.

Once the transform coefficients are scanned into the
one-dimensional array, the entropy encoding unit 56 may
apply entropy coding such as CAVLC, CABAC, syntax-
based context-adaptive binary arithmetic coding (SBAC), or
another entropy coding methodology to the coefficients.

To perform CAVLC, the entropy encoding unit 56 may
select a variable length code for a symbol to be transmitted.
Codewords in VL.C may be constructed such that relatively
shorter codes correspond to more likely symbols, while
longer codes correspond to less likely symbols. In this way,
the use of VLC may achieve a bit savings over, for example,
using equal-length codewords for each symbol to be trans-
mitted.

To perform CABAC, the entropy encoding unit 56 may
select a context model to apply to a certain context to encode
symbols to be transmitted. The context may relate to, for
example, whether neighboring values are non-zero or not.
The entropy encoding unit 56 may also entropy encode
syntax elements, such as the signal representative of the
selected transform. In accordance with the techniques of this
disclosure, the entropy encoding unit 56 may select the
context model used to encode these syntax elements based
on, for example, an intra-prediction direction for intra-
prediction modes, a scan position of the coefficient corre-
sponding to the syntax elements, block type, and/or trans-
form type, among other factors used for context model
selection.

Following the entropy coding by the entropy encoding
unit 56, the resulting encoded video may be transmitted to
another device, such as the video decoder 30, or archived for
later transmission or retrieval.

In some cases, the entropy encoding unit 56 or another
unit of the video encoder 20 may be configured to perform
other coding functions, in addition to entropy coding. For
example, the entropy encoding unit 56 may be configured to
determine coded block pattern (CBP) values for CU’s and
PU’s. Also, in some cases, the entropy encoding unit 56 may
perform run length coding of coefficients.

The inverse quantization unit 58 and the inverse transform
module 60 apply inverse quantization and inverse transfor-
mation, respectively, to reconstruct the residual block in the
pixel domain, e.g., for later use as a reference block. The
motion compensation unit 44 may calculate a reference
block by adding the residual block to a predictive block of
one of the frames of the reference frame buffer 64. The
motion compensation unit 44 may also apply one or more
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interpolation filters to the reconstructed residual block to
calculate sub-integer pixel values for use in motion estima-
tion. The summer 62 adds the reconstructed residual block
to the motion compensated prediction block produced by the
motion compensation unit 44 to produce a reconstructed
video block.

The loop filter unit 43 may then perform loop filtering on
the reconstructed blocks in accordance with the techniques
described above. In examples of the disclosure, loop filter
unit 43, alone or together with other components of video
encoder 20, may be configured to perform loop filtering in
a video coding process. For example, loop filter unit 43 may
be configured to determine, for a current pixel of a recon-
structed block, that one or more pixels corresponding to
filter coefficients of a filter mask for an loop filter are across
one of a slice or a tile boundary, and to perform loop filtering
on the current pixel using a partial loop filter (e.g., a
symmetrical or asymmetrical partial loop filter according to
examples of this disclosure).

In one example, loop filter unit 43 may be further con-
figured to remove the filter coefficients corresponding to the
one or more pixels across the slice or tile boundary from the
filter mask, and to create a partial filter mask for the partial
loop filter using the remaining filter coefficients in the filter
mask. Loop filter unit 43 may also renormalize the partial
filter mask, wherein performing loop filtering comprises
performing loop filtering on the current pixel using the
partial loop filter with the renormalized partial filter mask.

In another example, loop filter unit 43 may be further
configured to remove first filter coeflicients corresponding to
the one or more pixels across the slice or tile boundary from
the filter mask, to remove second filter coefficients corre-
sponding to pixels on the inside of the slice and tile
boundary in order to maintain a symmetrical filter mask
relative to the removed first filter coefficients, and to create
a partial filter mask for the partial loop filter using the
remaining filter coefficients in the filter mask.

After filtering the pixels, using the loop filtering tech-
niques described in this disclosure, the filtered reconstructed
video block is then stored in the reference frame buffer 64.
The reconstructed video block may be used by the motion
estimation unit 42 and the motion compensation unit 44 as
a reference block to inter-code a block in a subsequent video
frame. In this manner, loop filter unit 43 represents an
example of a filtering unit that performs in-loop filtering of
video data in accordance with the techniques of this disclo-
sure, e.g., as described with respect to FIGS. 6-10.

FIG. 12 is a block diagram illustrating an example of a
video decoder 30, which decodes an encoded video
sequence. In the example of FIG. 12, the video decoder 30
includes an entropy decoding unit 70, a motion compensa-
tion unit 72, an intra-prediction module 74, an inverse
quantization unit 76, an inverse transformation unit 78, a
reference frame buffer 82, a loop filter unit 79, and a summer
80. The video decoder 30 may, in some examples, perform
a decoding pass generally reciprocal to the encoding pass
described with respect to the video encoder 20 (see FI1G. 11).

The entropy decoding unit 70 performs an entropy decod-
ing process on the encoded bitstream to retrieve a one-
dimensional array of transform coefficients. The entropy
decoding process used depends on the entropy coding used
by the video encoder 20 (e.g., CABAC, CAVLC, etc.). The
entropy coding process used by the encoder may be signaled
in the encoded bitstream or may be a predetermined process.

In some examples, the entropy decoding unit 70 (or the
inverse quantization unit 76) may scan the received values
using a scan mirroring the scanning mode used by the
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entropy encoding unit 56 (or the quantization unit 54) of the
video encoder 20. Although the scanning of coefficients may
be performed in the inverse quantization unit 76, scanning
will be described for purposes of illustration as being
performed by the entropy decoding unit 70. In addition,
although shown as separate functional units for ease of
illustration, the structure and functionality of the entropy
decoding unit 70, the inverse quantization unit 76, and other
units of the video decoder 30 may be highly integrated with
one another.

The inverse quantization unit 76 inverse quantizes, i.e.,
de-quantizes, the quantized transform coefficients provided
in the bitstream and decoded by the entropy decoding unit
70. The inverse quantization process may include a conven-
tional process, e.g., similar to the processes proposed for
HEVC or defined by the H.264 decoding standard. The
inverse quantization process may include use of a quanti-
zation parameter QP calculated by the video encoder 20 for
the CU to determine a degree of quantization and, likewise,
a degree of inverse quantization that should be applied. The
inverse quantization unit 76 may inverse quantize the trans-
form coefficients either before or after the coefficients are
converted from a one-dimensional array to a two-dimen-
sional array.

The inverse transform module 78 applies an inverse
transform to the inverse quantized transform coefficients. In
some examples, the inverse transform module 78 may
determine an inverse transform based on signaling from the
video encoder 20, or by inferring the transform from one or
more coding characteristics such as block size, coding mode,
or the like. In some examples, the inverse transform module
78 may determine a transform to apply to the current block
based on a signaled transform at the root node of a quadtree
for an LCU including the current block. Alternatively, the
transform may be signaled at the root of a TU quadtree for
a leaf-node CU in the LCU quadtree. In some examples, the
inverse transform module 78 may apply a cascaded inverse
transform, in which inverse transform module 78 applies
two or more inverse transforms to the transform coefficients
of the current block being decoded.

The intra-prediction module 74 may generate prediction
data for a current block of a current frame based on a
signaled intra-prediction mode and data from previously
decoded blocks of the current frame.

Based on the retrieved motion prediction direction, ref-
erence frame index, and calculated current motion vector,
the motion compensation unit produces a motion compen-
sated block for the current portion. These motion compen-
sated blocks essentially recreate the predictive block used to
produce the residual data.

The motion compensation unit 72 may produce the
motion compensated blocks, possibly performing interpola-
tion based on interpolation filters. Identifiers for interpola-
tion filters to be used for motion estimation with sub-pixel
precision may be included in the syntax elements. The
motion compensation unit 72 may use interpolation filters as
used by the video encoder 20 during encoding of the video
block to calculate interpolated values for sub-integer pixels
of a reference block. The motion compensation unit 72 may
determine the interpolation filters used by the video encoder
20 according to received syntax information and use the
interpolation filters to produce predictive blocks.

Additionally, the motion compensation unit 72 and the
intra-prediction module 74, in an HEVC example, may use
some of the syntax information (e.g., provided by a
quadtree) to determine sizes of LCUs used to encode
frame(s) of the encoded video sequence. The motion com-
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pensation unit 72 and the intra-prediction module 74 may
also use syntax information to determine split information
that describes how each CU of a frame of the encoded video
sequence is split (and likewise, how sub-CUs are split). The
syntax information may also include modes indicating how
each split is encoded (e.g., intra- or inter-prediction, and for
intra-prediction an intra-prediction encoding mode), one or
more reference frames (and/or reference lists containing
identifiers for the reference frames) for each inter-encoded
PU, and other information to decode the encoded video
sequence.

The summer 80 combines the residual blocks with the
corresponding prediction blocks generated by the motion
compensation unit 72 or the intra-prediction module 74 to
form decoded blocks. The loop filter unit 79 then performs
loop filtering in accordance with the techniques described
above.

In examples of the disclosure, loop filter unit 79, alone or
together with other components of video decoder 30, may be
configured to perform loop filtering in a video coding
process. Loop filtering may include one or more of deblock-
ing, ALF, and SAO filtering. For example, loop filter unit 79
may be configured to determine, for a current pixel, that one
or more pixels corresponding to filter coefficients of a filter
mask for an loop filter are across one of a slice or a tile
boundary, and to perform loop filtering on the current pixel
using a partial loop filter.

In one example, loop filter unit 79 may be further con-
figured to remove the filter coefficients corresponding to the
one or more pixels across the slice or tile boundary from the
filter mask, and to create a partial filter mask for the partial
loop filter using the remaining filter coefficients in the filter
mask. Loop filter unit 79 may also renormalize the partial
filter mask, wherein performing loop filtering comprises
performing loop filtering on the current pixel using the
partial loop filter with the renormalized partial filter mask.

In another example, loop filter unit 79 may be further
configured to remove first filter coeflicients corresponding to
the one or more pixels across the slice or tile boundary from
the filter mask, to remove second filter coefficients corre-
sponding to pixels on the inside of the slice and tile
boundary in order to maintain a symmetrical filter mask
relative to the removed first filter coefficients, and to create
a partial filter mask for the partial loop filter using the
remaining filter coefficients in the filter mask.

The decoded video blocks are then stored in the reference
frame buffer 82, which provides reference blocks for sub-
sequent motion compensation for inter-predictive coding
and also produces decoded video for presentation on a
display device (such as the display device 32 of FIG. 1). In
this manner, loop filter unit 79 represents an example of a
filtering unit that performs in-loop filtering of video data in
accordance with the techniques of this disclosure, e.g., as
described with respect to FIGS. 6-10.

FIG. 13 is a flowchart depicting an example method of
loop filtering according to the disclosure. The techniques
shown in FIG. 13 may be implemented by either video
encoder 20 or video decoder 30 (generally by a video coder).
A video coder may be configured to determine, for a current
pixel, that one or more pixels corresponding to filter coef-
ficients of a filter mask for a loop filter are across one of a
slice or a tile boundary (820). The video coder may be
further configured to remove first filter coeflicients corre-
sponding to the one or more pixels across the slice or tile
boundary from the filter mask (822). In this case, an asym-
metric partial filter is formed. Optionally, the video coder
may be further configured to remove second filter coeffi-
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cients corresponding to pixels on the inside of the slice and
tile boundary in order to maintain a symmetrical filter mask
relative to the removed first filter coefficients (824).

The video coder may be further configured to create a
partial filter mask for the partial loop filter using the remain-
ing filter coefficients in the filter mask (826) and to renor-
malize the partial filter mask (828). Renormalizing the filter
coefficients may include recalculating the value of the
remaining filter coeflicients in the partial filter mask such
that the total value of the remaining filter coefficients equals
the total value of filter coeflicients in a full filter mask.
Often, this total value is 1. The video coder then performs
loop filtering on the current pixel using a partial loop filter
with the renormalized partial filter mask (830).

In some examples, the video coder may be further con-
figured to determine, for the current pixel, that one or more
pixels corresponding to filter coefficients of the filter mask
for the loop filter are across a vertical tile boundary, and to
skip performing loop filtering for the current pixel.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored on or transmitted over, as one or more
instructions or code, a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techniques described in this disclosure. A computer
program product may include a computer-readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transient media, but are
instead directed to non-transient, tangible storage media.
Disk and disc, as used herein, includes compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc, where disks usually reproduce data
magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
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grated circuits (ASICs), field programmable logic arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the term “processor,” as used herein
may refer to any of the foregoing structure or any other
structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

The techniques of this disclosure may be implemented in
a wide variety of devices or apparatuses, including a wire-
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are
described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a col-
lection of interoperative hardware units, including one or
more processors as described above, in conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What is claimed is:
1. A method for performing adaptive loop filtering in a
video coding process, the method comprising:
receiving filter coefficients of a filter mask for an adaptive
loop filter;
determining, for a first pixel, that all pixels corresponding
to filter coefficients of the filter mask are within a
boundary;
based on the determination that all pixels corresponding
to the filter coeflicients of the filter mask are within the
boundary, performing adaptive loop filtering on the first
pixel using all the filter coefficients of the filter mask;
determining, for a second pixel, that one or more pixels
corresponding to filter coefficients of the filter mask are
across a boundary, wherein the boundary comprises
one of a slice boundary between a first slice and a
second slice or a tile boundary between a first tile and
a second tile;
based on the determination that the second group of one
or more pixels corresponding to the filter coefficients of
the filter mask are across the boundary, defining a
partial adaptive loop filter, wherein defining the partial
adaptive loop filter comprises:
removing, from the filter mask, first filter coefficients
corresponding to the one or more pixels across the
boundary;
removing, from the filter mask, at least a portion of
second filter coefficients corresponding to pixels on
an inside of the boundary sufficient to maintain a
symmetrical filter mask relative to the removed first
filter coefficients; and
creating a partial filter mask for the partial adaptive
loop filter using filter coeflicients that have not been
removed from the filter mask, wherein the partial
filter mask defines the partial adaptive loop filter; and
performing adaptive loop filtering on the second pixel
using a partial adaptive loop filter.
2. The method of claim 1, wherein defining the partial
adaptive loop filter comprises:
renormalizing the partial filter mask, wherein performing
adaptive loop filtering comprises performing adaptive
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loop filtering on the second pixel using the partial
adaptive loop filter with the renormalized partial filter
mask.

3. The method of claim 1, wherein the video coding
process is a video encoding process, the method further
comprising:

encoding a block of video data to form an encoded block

of video data; and

reconstructing the encoded block of video data to form a

reconstructed block of video data, wherein the second
pixel is within the reconstructed block of video data.

4. The method of claim 1, wherein the video coding
process is a video decoding process, the method further
comprising:

receiving an encoded block of video data; and

performing a prediction process to form a reconstructed

block of video data, wherein the second pixel is within
the reconstructed block of video data.

5. The method of claim 1, wherein determining, for the
second pixel, that the one or more pixels corresponding to
the filter coefficients of the filter mask for the adaptive loop
filter are across the boundary comprises determining the
second pixel is located in one of the first slice or the first tile
and the one or more pixels corresponding to the filter
coeflicients of the filter mask for the adaptive loop filter are
located in one of the second slice or the second tile.

6. The method of claim 1, further comprising:

receiving video data comprising the filter coefficients at a

receiver of a wireless communication device;

storing the filter coefficients on a memory of the wireless

communication device; and

processing the video data on one or more processors of the

wireless communication device.

7. The method of claim 6, wherein the wireless commu-
nication device comprises a telephone handset and wherein
receiving the video data at the receiver of the wireless
communication device comprises demodulating, according
to a wireless communication standard, a signal comprising
the video data.

8. An apparatus configured to perform adaptive loop
filtering in a video coding process, the apparatus compris-
ing:

a memory configured to store filter coefficient informa-

tion; and

one or more processors configured to:

receive filter coeflicients of a filter mask for an adaptive
loop filter;

determine, for a first pixel, that all pixels corresponding
to filter coefficients of the filter mask are within a
boundary;

based on the determination that all pixels correspond-
ing to the filter coefficients of the filter mask are
within the boundary, performing adaptive loop fil-
tering on the first pixel using all the filter coefficients
of the filter mask;

determine, for a second pixel, that one or more pixels
corresponding to filter coefficients of the filter mask
are across a boundary, wherein the boundary com-
prises one of a slice boundary between a first slice
and a second slice or a tile boundary between a first
tile and a second tile;

based on the determination that the second group of one
or more pixels corresponding to the filter coefficients
of the filter mask are across the boundary, define a
partial adaptive loop filter, the video coder is further
configured to:
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remove, from the filter mask, first filter coefficients
corresponding to the one or more pixels across the
boundary;

remove, from the filter mask, at least a portion of
second filter coefficients corresponding to pixels
on an inside of the boundary sufficient to maintain
a symmetrical filter mask relative to the removed
first filter coefficients; and

create a partial filter mask for the partial adaptive
loop filter using filter coefficients that have not
been removed from the filter mask, wherein the
partial filter mask defines the partial adaptive loop
filter; and

perform adaptive loop filtering on the second pixel

using the partial adaptive loop filter.

9. The apparatus of claim 8, wherein the video coder is
further configured to:

renormalize the partial filter mask, wherein performing

adaptive loop filtering comprises performing adaptive
loop filtering on the second pixel using the partial
adaptive loop filter with the renormalized partial filter
mask.

10. The apparatus of claim 8, wherein the video coder is
a video encoder, and wherein the video encoder is further
configured to:

encode a block of video data to form an encoded block of

video data; and

reconstruct the encoded block of video data to form a

reconstructed block of video data, wherein the second
pixel is within the reconstructed block of video data.

11. The apparatus of claim 8, wherein the video coder is
a video decoder, and wherein the video decoder is further
configured to:

receive an encoded block of video data; and

perform a prediction process to form a reconstructed

block of video data, wherein the second pixel is within
the reconstructed block of video data.

12. The apparatus of claim 8, wherein to determine, for
the second pixel, that the one or more pixels corresponding
to the filter coefficients of the filter mask for the adaptive
loop filter are across the boundary, the video coder is further
configured to determine the second pixel is located in one of
the first slice or the first tile and the one or more pixels
corresponding to the filter coefficients of the filter mask for
the adaptive loop filter are located in one of the second slice
or the second tile.

13. The apparatus of claim 8, wherein the apparatus
comprises a wireless communication device, and wherein
the apparatus further comprises a receiver configured to
receive the 3D video data.

14. The apparatus of claim 13, wherein the wireless
communication device comprises a telephone handset and
wherein the receiver is configured to demodulate, according
to a wireless communication standard, a signal comprising
the 3D video data.

15. An apparatus configured to perform adaptive loop
filtering in a video coding process, the apparatus compris-
ing:

means for receiving filter coefficients of a filter mask for

an adaptive loop filter;

means for determining, for a first pixel, that all pixels

corresponding to filter coefficients of the filter mask are
within a boundary;

means for performing adaptive loop filtering on the first

pixel using all the filter coeflicients of the filter mask
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based on the determination that all pixels correspond-
ing to the filter coefficients of the filter mask are within
the boundary;

means for determining, for a second pixel, that one or

more pixels corresponding to filter coefficients of the
filter mask are across a boundary, wherein the boundary
comprises one of a slice boundary between a first slice
and a second slice or a tile boundary between a first tile
and a second tile;

means for defining, based on the determination that the

second group of one or more pixels corresponding to

the filter coefficients of the filter mask are across the

boundary, a partial adaptive loop filter, wherein the

means for defining the partial adaptive loop filter

comprises:

means for removing, from the filter mask, first filter
coeflicients corresponding to the one or more pixels
across the boundary;

means for removing, from the filter mask, at least a
portion of second filter coefficients corresponding to
pixels on an inside of the boundary sufficient to
maintain a symmetrical filter mask relative to the
removed first filter coefficients; and

means for creating a partial filter mask for the partial
adaptive loop filter using filter coefficients that have
not been removed from the filter mask, wherein the
partial filter mask defines the partial adaptive loop
filter; and

means for performing adaptive loop filtering on the sec-

ond pixel using a partial adaptive loop filter.

16. The apparatus of claim 15, wherein the means for
defining the partial adaptive loop filter comprises:

means for renormalizing the partial filter mask, wherein

the means for performing adaptive loop filtering com-
prises means for performing adaptive loop filtering on
the second pixel using the partial adaptive loop filter
with the renormalized partial filter mask.

17. The apparatus of claim 15, wherein the video coding
process is a video encoding process, the apparatus further
comprising:

means for encoding a block of video data to form an

encoded block of video data; and

means for reconstructing the encoded block of video data

to form a reconstructed block of video data, wherein the
second pixel is within the reconstructed block of video
data.

18. The apparatus of claim 15, wherein the video coding
process is a video decoding process, the apparatus further
comprising:

means for receiving an encoded block of video data; and

means for performing a prediction process to form a

reconstructed block of video data, wherein the second
pixel is within the reconstructed block of video data.

19. The apparatus of claim 15, wherein the means for
determining, for the second pixel, that the one or more pixels
corresponding to the filter coefficients of the filter mask for
the adaptive loop filter are across the boundary comprises
means for determining the second pixel is located in one of
the first slice or the first tile and the one or more pixels
corresponding to the filter coefficients of the filter mask for
the adaptive loop filter are located in one of the second slice
or the second tile.

20. A non-transitory computer-readable storage medium
storing instructions that, when executed, cause one or more
processors configured to perform a video coding process to:

receive filter coeflicients of a filter mask for an adaptive

loop filter;
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determine, for a first pixel, that all pixels corresponding to
filter coefficients of the filter mask are within a bound-
ary;
based on the determination that all pixels corresponding
to the filter coeflicients of the filter mask are within the
boundary, perform adaptive loop filtering on the first
pixel using all the filter coefficients of the filter mask;
determine, for a second pixel, that one or more pixels
corresponding to filter coefficients of the filter mask are
across a boundary, wherein the boundary comprises
one of a slice boundary between a first slice and a
second slice or a tile boundary between a first tile and
a second tile;
based on the determination that the second group of one
or more pixels corresponding to the filter coefficients of
the filter mask are across the boundary, define a partial
adaptive loop filter, wherein to define the partial adap-
tive loop filter the one or more processors are further
configured to:
remove, from the filter mask, first filter coefficients
corresponding to the one or more pixels across the
boundary;
remove, from the filter mask, at least a portion of
second filter coefficients corresponding to pixels on
an inside of the boundary sufficient to maintain a
symmetrical filter mask relative to the removed first
filter coefficients; and
create a partial filter mask for the partial adaptive loop
filter using filter coefficients that have not been
removed from the filter mask, wherein the partial
filter mask defines the partial adaptive loop filter; and
perform adaptive loop filtering on the second pixel using
the partial adaptive loop filter.

21. The non-transitory computer-readable storage
medium of claim 20, wherein to define the partial adaptive
loop filter, the one or more processors are further configured
to:
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renormalize the partial filter mask, wherein performing
adaptive loop filtering comprises performing adaptive
loop filtering on the second pixel using the partial
adaptive loop filter with the renormalized partial filter
mask.

22. The non-transitory computer-readable storage
medium of claim 20, wherein the video coding process is a
video encoding process, and wherein the one or more
processors are further configured to:

encode a block of video data to form an encoded block of

video data; and

reconstruct the encoded block of video data to form a

reconstructed block of video data, wherein the second
pixel is within the reconstructed block of video data.

23. The non-transitory computer-readable storage
medium of claim 20, wherein the video coding process is a
video decoding process, and wherein the one or more
processors are further configured to:

receive an encoded block of video data; and

perform a prediction process to form a reconstructed

block of video data, wherein the second pixel is within
the reconstructed block of video data.

24. The non-transitory computer-readable storage
medium of claim 20, wherein to determine, for the second
pixel, that the one or more pixels corresponding to the filter
coeflicients of the filter mask for the adaptive loop filter are
across the boundary, the non-transitory computer-readable
storage medium stores further instructions that when
executed by the one or more processors cause the one or
more processors to determine the second pixel is located in
one of the first slice or the first tile and the one or more pixels
corresponding to the filter coefficients of the filter mask for
the adaptive loop filter are located in one of the second slice
or the second tile.



